The mirn23a microRNA cluster antagonizes B cell development.
نویسندگان
چکیده
Ablation of microRNA synthesis by deletion of the microRNA-processing enzyme Dicer has demonstrated that microRNAs are necessary for normal hematopoietic differentiation and function. However, it is still unclear which specific microRNAs are required for hematopoiesis and at what developmental stages they are necessary. This is especially true for immune cell development. We previously observed that overexpression of the products of the mirn23a gene (microRNA-23a, -24-2, and 27a) in hematopoietic progenitors increased myelopoiesis with a reciprocal decrease in B lymphopoiesis, both in vivo and in vitro. In this study, we generated a microRNA-23a, -24-2, and 27a germline knockout mouse to determine whether microRNA-23a, -24-2, and 27a expression was essential for immune cell development. Characterization of hematopoiesis in microRNA-23a, -24-2, and 27a-/- mice revealed a significant increase in B lymphocytes in both the bone marrow and the spleen, with a concomitant decrease in myeloid cells (monocytes/granulocytes). Analysis of the bone marrow progenitor populations revealed a significant increase in common lymphoid progenitors and a significant decrease in both bone marrow common myeloid progenitors and granulocyte monocyte progenitors. Gene-expression analysis of primary hematopoietic progenitors and multipotent erythroid myeloid lymphoid cells showed that microRNA-23a, -24-2, and 27a regulates essential B cell gene-expression networks. Overexpression of microRNA-24-2 target Tribbles homolog 3 can recapitulate the microRNA-23a, -24-2, and 27a-/- phenotype in vitro, suggesting that increased B cell development in microRNA-23a, -24-2, and 27a null mice can be partially explained by a Tribbles homolog 3-dependent mechanism. Data from microRNA-23a, -24-2, and 27a-/- mice support a critical role for this microRNA cluster in regulating immune cell populations through repression of B lymphopoiesis.
منابع مشابه
The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis
MicroRNA cluster mirn23a has previously been shown to promote myeloid development at the expense of lymphoid development in overexpression and knockout mouse models. This polarization is observed early in hematopoietic development, with an increase in common lymphoid progenitors (CLPs) and a decrease in all myeloid progenitor subsets in adult bone marrow. The pool size of multipotential progeni...
متن کاملEvaluation of the mirn23a Cluster through an iTRAQ-based Quantitative Proteomic Approach.
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that are implicated in a number of disease states. MiRNAs can exist as individual entities or may be clustered and transcribed as a single polycistron. The mirn23a cluster consists of three miRNAs: miR-23a, miR-24-2, and miR-27a. Although these miRNAs are transcribed together, they often exist at varying levels in the cel...
متن کاملOverexpression of microRNA-630 in Acute Leukemic T-cell line
Background: MicroRNAs (miRNAs) are noncoding RNAs that control the expression of their target mRNAs. It affects cancer cell proliferation and apoptosis as oncogenes or tumor suppressors. Dysregulation of miRNAs expression leads to the development of various cancers. Therefore, for the first time in this field, this study investigated the effect of overexpression of microRNA-630 on the Jurkat ce...
متن کاملOverexpression of MicroRNA-506 in Jurkat (acute T Cell Leukemia) Cell Line
Background & Objective: Acute lymphoblastic leukemia (ALL) is a malignant disease that arises from various mutations in B or T-lymphoid progenitors. MicroRNAs (miRNAs) regulate gene expression by binding to the 3' untranslated region of protein-coding genes. Dysregulation of miRNA expression m...
متن کاملRegulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs
The molecular mechanisms that regulate B-cell development and tolerance remain incompletely understood. In this study, we identify a critical role for the miR-17∼92 microRNA cluster in regulating B-cell central tolerance and demonstrate that these miRNAs control early B-cell development in a cell-intrinsic manner. While the cluster member miR-19 suppresses the expression of Pten and plays a key...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of leukocyte biology
دوره 100 4 شماره
صفحات -
تاریخ انتشار 2016